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A B S T R A C T

With the rapid development of science and technology, the manufacturing industry has to cope with
increasingly stricter requirements in terms of the quality of processed products. To improve production
flexibility and automation, computer vision is widely used in machining due to its safety, reliability, continuity,
high accuracy, and real-time performance. In this study, a comprehensive review of positioning methods
for workpieces in machining is presented from the perspective of computer vision technology. First, the
key technologies in image acquisition are described in detail, and a analysis of different lighting modes is
conducted. Second, image preprocessing is described by summarizing enhancement and image segmentation
methods. Third, from the perspectives of accuracy and speed, feature extraction methods are compared and
evaluated. Next, the existing applications of visual positioning technology in machining are discussed. Finally,
the existing problems are summarized, and future research directions technology suggested.
. Introduction

In recent years, with the rapid development of artificial intelligence,
esearch on computer vision has progressed significantly. Visual posi-
ioning technology, based on computer vision, is currently one of the
ey research topics. Unlike traditional positioning technology, visual
ositioning technology utilizes visual information effectively to achieve
ynamic target tracking, model reconstruction, and real-time process-
ng. Therefore, research on positioning processing methods based on
omputer vision is important to identify application prospects for such
ethods.

In the manufacturing industry, processing methods such as tradi-
ional machine tool processing [1], electric discharge processing [2],
aser processing [3,4], ultrasonic processing [5], and high-pressure
ater jet processing [6] are being upgraded to obtain high-precision
roducts. Flexible automation of workpieces has been realized using
omputer numerical control (CNC) machine tools. However, flexible
utomation has not been achieved in terms of precise positioning of
orkpieces. Two techniques are mainly used for high-precision instal-

ation and positioning of workpieces. In the first technique, workpieces
re placed on the machine tool manually and then measured manually
o the correct processing position [7]. The other technique is to design a
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special high-precision fixture according to the characteristics of the ma-
chining parts and processes and then installing the fixture accurately on
the machine tool. The relative positioning of workpieces is performed
through close contact of the datum planes between the workpieces and
the fixture. As the accuracy requirements in product processing become
increasingly stringent, traditional positioning methods cannot satisfy
the demand for high precision, efficiency, automation, and flexibility,
due to fixture wear, environmental impact, and human factors. Visual
positioning technology provides an innovative solution for traditional
positioning processing [8]. The visual positioning system for machin-
ing (Fig. 1) is mainly composed of an image acquisition subsystem,
an information conversion subsystem (computer system), positioning
algorithms, and a processing subsystem. The visual positioning system
uses suitable light sources and image sensors (CCD camera) to obtain
workpiece images. Corresponding image positioning algorithms (image
preprocessing, edge detection, feature extraction, etc.) are adopted to
extract the edge and position information of the images, and the work-
pieces are finally processed (cutting, drilling, welding, etc.) through
executive part. With continuous improvements in industrial automa-
tion, the application of visual positioning systems in the industry is
becoming increasingly widespread.
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Nomenclature

CNC Computer numerical control
CNN Convolutional neural network
DOF Depth of field
EDM Electric discharge machining
FCN Fully convolutional networks
GA Genetic algorithm
GAN Generative Adversarial Network
GoogleNet Google inception Net
PCB Printed circuit board
PMD Phase measurement deflection
PSO Particle swarm optimization
RBF Radial basis function
R-CNN Region-CNN
ReNet Recurrent Neural Network
ResNet Residential Networking
SIFT Scale-invariant feature transform
SSD Single shot multibox detector
SURF Speeded up robust features
VGG Visual geometry group

Fig. 1. The work flow of vision system in workpieces positioning processing.

The combination of visual positioning technology and robotic arms
ill be a major breakthrough in the industrial manufacturing. The
ppearance of drilling robot arm with positioning function [9], me-
hanical system for automatically positioning and accurate placement
f workpiece [10], and various automatic positioning solutions based
n vision [11] have brought unprecedented high precision to the man-
facturing industry, and set off a research boom of visual positioning
rocessing methods. Scholars have carried out a lot of the technical ex-
loration and practice. Ouyang (2016) et al. [12] proposed that visual
ositioning can be applied to plate processing positioning (automatic
eeding positioning by punch press, automatic feeding positioning by
aser processing line), which has higher positioning accuracy than
echanical positioning and sensor positioning. Grinding positioning
rocessing system based on machine vision also has been proved to
ave good positioning capabilities [13], which can perform workpiece
ositioning and grasping and accurate grinding of workpiece surface
urrs under complex background conditions. Wan (2019) et al. [14]
roposed a shape-based template matching method combining linear
lgorithm and Region of Interest (ROI) area to locate rough-machined
astings, which can find rough objects at a high calculation speed with
ood robustness. According to the experiments, the repeatability of the
2

system is within 2 mm, verifying the feasibility of the method and
the robustness of the algorithm. Chen (2019) et al. [15] improved
feature matching with the combination of the traditional oriented
fast and rotated brief algorithm and the random sampling consensus
algorithm. Based on the consistency of distance, rotation and Angle
of the correctly matched point pairs, the improved algorithm obtains
the mismatched point pairs in advance to improve the poor real-time
performance and low precision of the image matching technology. Hou
(2020) et al. [16] proposed a welding robot positioning method based
on machine vision and laser ranging to solve the problem of precise
positioning of welding robots in automated bar production, with certain
reference significance for the motion control of welding robots. Liu
(2020) et al. [17] developed an intelligent vision CNC cutting system
that integrates control and vision technology. This system can identify
feature points to perform cutting, and the correct recognition rate of
marked points is as high as 98%. The system has been applied in
batch production. Ni (2020) et al. [18] designed a vision-based mi-
croelectronic device positioning scheme, which combines the boundary
tracking algorithm and template matching algorithm of binary images
to accurately position electronic products on the assembly line, showing
that the positioning accuracy of the proposed method is 0.2 mm with
certain practical value for the positioning and processing of electronic
products.

Positioning is a vital step in workpieces processing, the accuracy
of which affects the precision of workpieces directly. Computer vision-
assisted positioning of workpieces is expected to become the main-
stream trend in machining. In this study, methods of workpiece posi-
tioning in machining are reviewed from the perspective of the computer
vision technology (image acquisition, image preprocessing, feature ex-
traction, etc.). Therefore, a structure diagram of workpiece positioning
based on computer vision in machining (traditional and non-traditional
machining) is provided in Fig. 2. In Section 2, the key technologies used
in machine vision systems are discussed in detail, and the hardware
performance (light source, lens, etc.) in different systems is compared.
Image preprocessing is the prerequisite for processing and positioning
the workpiece, and good image preprocessing can make the positioning
of the workpiece more accurate. Therefore, Section 3 reviews image
preprocessing methods(image segmentation and image enhancement)
used for workpiece positioning in machining and compares their ad-
vantages and disadvantages. In Section 4, the methods used for feature
extraction of workpieces in machining positioning are listed. In ad-
dition, these methods are divided into three categories traditional,
template matching and deep learning algorithms and their advantages
and disadvantages are compared. Section 5 reviews the applications of
traditional, non-traditional machining and printed circuit board (PCB)
machining for workpiece positioning. Finally, the future development
of visual positioning technology is discussed.

2. Optical systems

As depicted in Fig. 3, the computer vision system for machining po-
sitioning includes hardware (light source, lens, camera, etc.), software,
and execution components. In a visual positioning system, the most
critical technologies are light source, optical lens, image acquisition,
and image processing. The selection of the lighting source, optical
lens in the optical imaging system, and the camera required for image
acquisition are the key to the success of the vision system.

2.1. Light source

In a visual positioning system, an external light source is commonly
used to illuminate the workpieces. The light source is required to
provide the best lighting condition for each position of the workpiece
without being affected by the external ambient light. The images ob-
tained via image acquisition should highlight the features of the work-
pieces as much as possible and should have sufficient overall bright-
ness [19]. Common light sources include incandescent lamps [20],
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Fig. 2. The structure diagram of comprehensive review: machining positioning based on computer vision.
Fig. 3. The overview of computer vision system for machining positioning.
3

xenon lamps [21], fluorescent lamps [22], halogen lamps [23], and
LED [24]. Among these, incandescent lamps have essentially become
obsolete. With the continuous development of lighting technology,
scholars have focused on composite light sources (combined light) [25,
26]. A performance comparison between different light sources is
provided in Table 1.

Through comparisons between several key parameters, such as ser-
vice life, light efficiency, brightness, power consumption, and heat
generation, of several light sources, it was found that the overall
performance of LED lights is significantly better than that of other
light sources [27]. For a visual positioning system, a stable, uniform,
and suitable light source is indispensable [27,28]. Compared with
traditional light sources, LED lights offer a stable luminous intensity,
long life, and convenient adjustment. In the selection of a light source,
factors such as economic cost and processing environment must also be
comprehensively considered. In view of all the aforementioned factors,
LED lights represent the most suitable choice of lighting source for a
computer vision positioning system.

According to the brightness/darkness of the view field, the relative
position of the workpieces, and the angle of illumination, light sources
can be divided into bright- and dark-field illumination, back lighting,
forward small-angle and forward high-angle illumination, multi-angle
illumination, and coaxial illumination. Fig. 4 depicts the layout of
illumination for machining positioning. As shown in Fig. 4(a), the
reflected light entering the camera from inside the ‘‘W’’ region can be
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classified as the bright-field illumination; the obtained image contrast
is exceedingly high. On the contrary, when passing outside the ‘‘W’’
region, the lens receives diffuse light, and the light on the smooth
surface is reflected out. Therefore, the surface image of the uneven
workpiece can be obtained [29]. Fig. 4(b) displays back light illumi-
nation for workpiece positioning. The contour of the image obtained
using the lighting layout is clear and is suitable for detecting the size
and shape of the workpieces [30]. Fig. 4(c) shows multi-angle lighting,
where light illuminates the surface of the workpieces from different
angles. The overall illumination of the target is relatively uniform,
but the illumination area is relatively small. Therefore, this lighting
layout is suitable mainly for the detection of curved workpieces [31].
Fig. 4(d) shows coaxial illumination, in which light tends to be parallel
and more resistant to external interference [32]. This layout is mainly
used for semiconductors, PCB boards, and positioning processing of
metal parts [33]. Fig. 4(e) depicts low-angle illumination, which has
a strong ability to express the unevenness of a surface and is therefore
suitable for detection of workpieces with uneven surfaces [34]. Fig. 4(f)
shows high-angle illumination, which offers advantages such as a con-
centrated beam, high brightness, and good uniformity. This method is
often used for the positioning of small parts (such as bolts) [35].

2.2. Optical lens

The optical lens is an indispensable component in a vision system,
and its main function is optical imaging. Therefore, the quality of the
lens directly affects the effeteness of the image. According to literature,
lenses can be divided into telecentric (Fig. 5(a)) and non-telecentric
(Fig. 5(b)) types. The former is unique because it has zero parallax.
The lens parameters mainly include focal length, resolution, field of
view, and depth of field. [37,38], as shown in Fig. 5(c). Within a certain
range of object distance, the magnification of an image captured by a
telecentric lens will not change with variations in the object distance.

With the rapid development of computer vision, scholars are in-
creasingly studying the applications of lenses. Ordinary lenses can
no longer satisfy the requirements of vision systems due to parallax.
Therefore, such lenses are gradually being replaced by telecentric
lenses. A telecentric lens is a special lens designed to correct the
parallax of the traditional industrial lenses [39]. According to appli-
cation requirements, Chen et al. [40] adopted a telecentric lens placed
coaxially with a ring light source to provide stable illumination for a
vision system. Jing et al. [41] designed a large-magnification object-
side telecentric lens with a C-mount. The lens has 4 × magnification,

65 mm object-side working distance, a 0.1 degree telecentric angle,
nd 0.3% distortion and can be used for the positioning and monitoring
f touch screen defects online. For precise measurement of large parts,
hang et al. [42] designed a set of aspheric double telecentric lenses.
xperiments demonstrated that the lens had a depth of field of 80 mm,
maximum distortion of 0.05%, and a telecentricity of less than 0.01

egree, which satisfy modern positioning requirements. For complex
orkpieces and shaft parts, scholars have designed suitable telecentric

ens. To prevent the chromatic aberration in the imaging process, Yang
t al. [43] designed a high-resolution, wide-field apochromatic lenses to
vercome the optical path difference between different-colored lights.
hey found that after using the Buchdahl dispersion vector method to
eplace a part of the glass material optimization, the lens could meet the
esign requirements, i.e., no chromatic aberration and 30% resolution
n the objective space. For the measurement of three-dimensional mir-
or objects, Niu et al. [44] proposed an advanced phase measurement
eflection (PMD) method based on a novel mathematical model, which
ses a double telecentric lens to obtain the three-dimensional shape
f discontinuous mirror objects. Sun et al. [45] discussed the methods
f calibrating vision systems with telecentric lenses and conducted
ositioning experiments on metal workpieces with holes. Experimental
esults revealed that the maximum relative error of the main dimen-
4

ions of the workpieces was less than 0.51%, which is sufficient to
satisfy the positioning requirements. Li et al. [46] proposed a contour
error detection method for CNC machine tools based on monocular
vision. Because of their constant enlargement ratio, low imaging dis-
tortion, and large depth of field (DOF), telecentric lenses were used as
the optical systems. Compared with that of systems having traditional
lenses, the accuracy of imaging systems having telecentric lenses and a
calibration camera was higher, and the average measurement accuracy
was 4.2 𝜇m. Table 2 summarizes the lenses in the above literatures.

In summary, telecentric lenses are mainly designed to correct the
parallax of traditional lenses and to avoid ‘‘near large far small’’ situa-
tions. Compared with traditional lenses, telecentric lenses have a higher
depth of field, lower distortion, no parallax, and higher magnification.
Particularly, telecentric lenses will not introduce any uncertainty to the
image edge position, because of the geometric characteristics of the
visual light source. Thus, such lenses are suitable for the positioning
processing, size measurement, and classification recognition of parts
with various sizes. Considering the convenience and functionality of
practical applications (such as depth of field, parallax, distortion, posi-
tioning accuracy, and other factors), double telecentric lenses combined
with appropriate light sources are usually used in visual positioning
systems for image acquisition.

2.3. The camera characteristics and calibration

Camera calibration is divided into internal parameter calibration
and external parameter calibration, with the purpose to determine
the corresponding relationship between the target object in the im-
age coordinate system and the world coordinate system [47], which
needs to establish an imaging geometric model, with the premise
of obtaining camera parameters as the process. Therefore, after the
visual positioning system is installed, it is necessary to establish a
multi-coordinate system relationship and eliminate camera distortion
through camera calibration to establish an image geometric model and
eliminate distortion.

The camera obtains the geometric information of the object to be
processed by shooting images. In order to improve the efficiency and
accuracy of positioning in machining, many scholars have dedicated
to the research of camera calibration methods with the results as the
basis for subsequent positioning, which has been proved to improve
the positioning accuracy [48]. However, there are also some problems
such as cumbersome calibration process, large amount of calculation,
long calibration process time, and unstable results. With the rapid
development of machine vision, the theory and technology of camera
calibration have also been developed. Ding et al. [49] combined the
calibration method with the artificial neural network, which verified
that this algorithm has higher calibration accuracy and generalization
ability than traditional calibration algorithms, with faster convergence
rate than traditional artificial neural network structures. However,
they idealized the model without considering the relationship between
the parameters. Wang et al. [50] proposed an improved calibration
algorithm to improve the accuracy of chip positioning according to
the error analysis results of the vision system and the characteristics of
the chip positioning process, which has been verified that the system
error of the positioning system is about 6 μm after using the improved
calibration algorithm. However, the visual positioning system is mainly
used for the two-dimensional positioning of the chip, while the algo-
rithm focuses on the study of the external parameters of the camera,
ignoring the influence of the internal parameters of the camera on
the entire system. Chen et al. [51] put forward an improved nine-dot-
based camera self-calibration method to solve the problems of poor
anti-noise performance and low accuracy in the current monocular
camera calibration algorithms for laser cutting vision systems, which
is applicable in laser cutting, with unclear calibration effect in other
machining. Some calibration algorithms in recent years are listed in

Table 3. By analyzing and summarizing these calibration algorithms,
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Table 1
Performance comparison of common light sources in machining positioning system.

Type of light
source

Color Life/h; Brightness;Power/w Advantage Disadvantage

Incandescent
lamp [20]

White with light yellow 1000–3000h;Very bright;25–100
w

Low cost, good color
rendering

Low luminous efficiency,
short life

Xenon lamp [21] White with light blue 3000–6000 h;Brighter;50–150 w High Brightness Short life
Fluorescent lamp
[22]

White with light green 5000–7000 h;Brighter;50–100 w Long life and low heat
dissipation

Chromatic aberration

Halogen lamp
[23]

White with light yellow 5000–7000 h;Brighter;20–100 w High luminous efficiency Generate more heat

LED [24] Warm White, Fair White,
and Cold White

50000–100000 h;Bright;1–7 w Good color rendering
performance, concentrated
beam

High thermal dependence,
poor heat dissipation

Compound light
[36]

Multiple color Stability, adjustable light source
brightness and intensity

The controllability of color
and brightness

Combination of multiple
LED lights
Fig. 4. Layout of illumination for machining positioning (a) bright and dark field illumination [29]; (b) backlight illumination [30]; (c) multi-angle illumination [31]; (d) coaxial
light illumination [32]; (e) low-angle illumination [34]; (f) high-angle illumination [35].
the general development direction of the calibration methods in the
future visual positioning system is discussed.

In summary, calibration objects can be roughly divided into monoc-
ular, binocular and multi-camera calibration. At present, there are
many theories and methods for single-purpose calibration, with basi-
cally complete theoretical system, but the research on binocular and
bi-objective method needs to be in-depth. Previously, researchers have
proposed to apply artificial neural network to calibration, obtaining
better calibration results. With the development of deep learning, it is
possible that other excellent neural networks can also be combined with
calibration to obtain more accurate results. In addition, all issues, such
as how to solve the noise problem, exposure problem, accuracy problem
and near-range and long-range calibration problems in the calibration
process need to be considered in the future.
5

3. Image preprocessing

Image preprocessing refers to the need to perform operations such as
noise reduction and image enhancement on the image before the formal
processing of the image. Noise reduction is to eliminate noise in the
original image through some filtering operations. Affected by internal
and external factors such as illumination and industrial environment,
the gray-scale contrast between the target and the background in the
collected image may be insufficient, which will affect the subsequent
image segmentation and edge detection. Therefore, it is necessary to
enhance the collected images and improve the contrast of the images.
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Fig. 5. Lens performance for positioning in machining (a) telecentric lens; (b) non-telecentric; (c) the lens parameters.
Table 2
Performance comparison of lens in visual positioning processing system.

Researcher, Year Object Parameters Effects

Jing et al. [41],
2019

Object-side telecentric lens 4 times magnification, 0.1 degree
telecentric angle, 0.3% distortion

Ensure the brightness consistency of
the captured images

Zhang et al. [42],
2019

Double telecentric lens 80 mm depth of field,
telecentricity less than 0.01
degree, 0.05% distortion

Achieved the purpose of double
telecentricity, which can be applied
to the positioning of large-size
precision parts

Li et al. [46], 2018 Telecentric lens 40 mm depth of field, constant
magnification ratio, low imaging
distortion

High positioning accuracy with an
average accuracy of 4.2 mm

Niu et al. [44],
2018

Double telecentric lens Very small distortion, large
degrees of freedom

Able to accurately locate the mirror
object, the positioning error is less
than 25 μm

Sun et al. [45],
2018

Double telecentric lens The magnification is 0.057–0.5 x Less than 0.51%, and the accuracy
could meet the manufacturing
requirements

Yang et al. [43],
2016

Achromatic objective 60 mm depth of field, 30
resolution

Suitable for positioning industrial
parts, with good performance and
application value
3.1. Image enhancement

Through image enhancement, the image quality can be improved
and the features of the position of workpieces can be more prominent,
so that the subsequent image features can be analyzed and identified.
Image enhancement can be divided into three categories according to
illumination conditions, namely, weak light, normal light, and strong
light image enhancement. The light intensity of weak light is about
150 𝑙𝑥, that of the strong light is about 800 𝑙𝑥, and the light intensity
between weak light and strong light is defined as normal light [57].
In addition, we have analyzed and discussed the image enhancement
methods listed in Table 4. Han et al. [58] used a fast median filter
algorithm to reduce image noise in order to obtain the information of
6

the positioning hole in the incremental forming process of a car door.
In the production of capacitive screen mobile phones, Huang et al. [59]
enhanced the required image features using median filter to obtain the
precise mark points, which is beneficial for subsequent positioning and
processing. Since the median filter has good applicability only to single-
layer impulse noise, Jiang et al. [60] proposed a new adaptive median
filter method with stronger feasibility, which improved the image
enhancement effect while suppressing multi-pulse noise. Therefore, the
median filter is given priority to enhance the image in general.

Images and videos obtained under low light level conditions usu-
ally lose visibility and contrast seriously, which brings difficulties to
subsequent image processing and analysis. Enhancement of low illu-
mination images is one of the vital ways to solve the problem [61].
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Table 3
Performance comparison of calibration algorithms used in machining positioning.

Classification Researchers, Year Methods Performances Remarks

Monocular Chen et al. [51],
2021

Nine-dot, camera
self-calibration

Anti-noise performance and
higher accuracy than the fast
calibration algorithm

Suitable for laser cutting, but the
calibration effect in other
machining is unknown.

Monocular Fan et al. [52],
2021

Base frame calibration Rotation and translation accuracy
can reach 0.1 degree and 2 mm
respectively

Real-time calculation, but this
method needs to use two or more
robotic arms at the same time.

Monocular Wang et al. [53],
2020

Binocular ultra-wide
angle long-wave
infrared camera
calibration

The average reprojection error
and the root mean square are
reduced to 0.23 pixels and 0.33
pixels, and the baseline length
error is reduced from 1.00% to
0.23%.

Only calibrate for external
parameters, and ignore the
influence of internal parameters.

Monocular Peng et al. [54],
2020

Kinematic calibration Compared with the calibration
result of the classic D-H
kinematics model, the deviation is
reduced by nearly 7 pixels, and
the error is reduced by 87%.

Effectively avoid system errors
caused by camera parameters in
visual calibration, improve
positioning accuracy, and have
good economy and versatility.

Monocular Wang et al. [50],
2017

An improved
calibration algorithm

Significantly improve the chip
positioning accuracy, with good
stability and robustness

Need to rely on the error of each
part of the visual positioning
system; suitable for LED chip
positioning system.

Monocular Ding et al. [49],
2016

A calibration algorithm
combined with artificial
neural network.

Higher calibration accuracy and
generalization ability than
traditional calibration algorithms.

The algorithm idealizes the
calibration model without
considering the constraint
relationship between parameters.

Binocular Wan et al. [13],
2021

Eye-in-hand calibration Provides an efficient way to
enhance the positioning precision
in rotation

Achieved a good positioning
effect, but the calibration process
is complicated.

Binocular Jin et al. [55], 2019 Distortion correction The measurement error is
significantly reduced, and the
maximum error is only 0.074 mm

The method is effective to
improve the calibration accuracy,
but it separates the camera
calibration from the vision
system.

Multi-camera Chen et al. [56],
2019

An adaptive point cloud
correction algorithm

Adaptable and effective to
different types of static and
dynamic targets of uncertain
geometric changes and vibrations

Provides a theoretical basis for
real-time target positioning and
tracking, and further research is
needed.
Feng et al. [62] proposed a dark channel enhancement method that
adaptively increased the contrast of a given image. Experimental results
showed that the method improved the brightness and contrast of tra-
ditional low-brightness images, also effectively suppressed the strong
light area. Jiang et al. [63] found that images under low light have
similar visual characteristics to blurred images.

Therefore, they utilized the defogging methods to improve the
dark channel model and combined it with local smoothing and image
Gaussian pyramid operators, which could effectively enhance the local
details. However, this method cannot avoid noise amplification and
color distortion in the images. Although the use of low-pass filtering
and logarithmic transformation can eliminate the illumination com-
ponent to enhance the images, it is impossible to avoid the halo
phenomenon near strong edges [64]. Therefore, Park et al. [65] pro-
posed a low-light image enhancement method based on the variational
Retinex model using the bright channel prior and total-variation min-
imization, which estimates the brightness, intensity and reflectivity
of light to control the amount of brightness enhancement. It turned
out that the proposed method can provide better enhanced result in
the sense of both better brightness enhancement and less undesired
artifact. Zhang et al. [66] raised a low-illuminance image enhancement
algorithm based on directional total variation Retinex, which obtained
the final enhanced image by restoring the real color of the scene, illu-
minance image estimation and local brightness processing. Experiments
certified that the algorithm had achieved significant effects in remov-
ing color deviation, enhancing details and suppressing artifacts. The
images obtained under strong light conditions, whose color contrast
is low and close to the background gray. According to the study by
Li et al. [67], a convolutional neural network for weak illumination
image enhancement algorithm was proposed, with the Retinex model,
7

a convolutional neural network to estimate the illuminated image,
and a guided filtering to optimize the illuminated image, indicating
that the combination of Retinex model and convolutional network can
get a better enhancement effect. Lu et al. [68] investigated a high
light removal technology through improving the relationship of tone
mapping, which realized the feature enhancement and extraction of low
illumination region of metal parts.

In summary, scholars have proposed distinct schemes for image
enhancement in different illumination (weak light, normal light and
strong light). Under normal illumination, noise is one of the factors
that affects image quality greatly. Hence, the median filter is often
used to enhance images. While reducing noise, the filter does not blur
the boundaries of the image, but also preserves the edge details well.
Mean filtering and Gaussian filtering have the effect of suppressing
noise, but they will destroy the edge information of the image and
affect the subsequent processing of images. Wiener filtering can play
a better smoothing effect in image restoration, but due to the difficulty
of data conditions, it has not been widely used in applications. Due
to low brightness and contrast of the images captured in weak light,
which affects the subsequent image processing and causes the accuracy
of positioning to decline or positioning failure. For the processing of
weak light image, the Retinex algorithm is mostly adopted in literature
to restore the real color of low illumination image and improve the
accuracy of illumination estimation. However, the noise and artifacts
in low illumination image will also be amplified during enhancement
process. The improved Retinex algorithm can achieve better results, but
a systematic theoretical system for the enhancement of images with low
illumination areas has not yet formed.

3.2. Image segmentation

In the processing of machining positioning, the position of the
workpieces (region of interest) is the focus of attention of researchers.
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Table 4
Image enhancement methods for positioning under different illuminance.

Methods Applicable scene Strengths Weakness

Median filtering
[63]

Normal light(processing of
automobile door, Sheet forming and
manufacturing)

Effectively suppress noise Good performance only for
images containing a single layer
of impulse noise

Adaptive median
filter [64]

Normal light(Good shooting
environment and no overexposure)

Efficient processing of noisy
images

Unable to avoid image distortion
problem

Retinex algorithm
[65]

Weak light(unfocused beam, and dim
working environment)

Effectively avoid distortion
problems

A halo may appear near strong
edges

Optimized Retinex
algorithm [66]

Weak light(unfocused beam, and dim
working environment)

Suppress noise more effectively
and reduce distortion

The algorithm is more
complicated

Dark channel
enhancement [67]

Weak light(unfocused beam, and dim
working environment)

Improve image contrast,
effectively process strong light
images

The images are easily
over-enhanced

Low illumination
enhancement [68]

Strong light(positioning cutting of
metal parts)

Realize feature enhancement and
extraction in low illumination
areas

Only for high-gloss metal
workpieces
In order to ensure the accuracy of positioning, it is necessary to separate
the region of interest from images. Image segmentation is to use certain
features (color, intensity, texture, etc.) of the target area to separate
the target from the background [69]. Therefore, the quality of image
segmentation directly affects the accuracy of workpieces positioning.
Image segmentation methods from two main directions are summarized
below: traditional segmentation methods (threshold segmentation, im-
age segmentation based on edge detection, and region-based image
segmentation) and image segmentation based on deep learning.

3.2.1. Traditional image segmentation methods
Threshold segmentation is a traditional image segmentation

method. The basic principle is to select an appropriate threshold value
and extract it from the background to highlight the target area through
statistical calculation of the image gray level. Otsu is a more commonly
used method. This method divides the image into two parts, the target
and the background, according to the gray scale characteristics of the
image. When the variance between the target and the background
reaches the maximum, the segmentation effect is best. The Otsu is very
sensitive to salt and pepper noise. When the collected image contains
noise, the one-dimensional Otsu has a general segmentation effect.
Therefore, researchers often use improved Otsu segmentation to obtain
satisfactory results [70].

Yang et al. [71] improved the image segmentation for the dis-
pensing machine of the visual positioning system, which obtained
the center position of the segmented region via the Otsu methods
and introduced the particle swarm optimization (PSO) algorithm to
optimize the speed and accuracy of image segmentation for getting
the best threshold. Experimental results showed that PSO algorithm
can improve the speed and accuracy, reduce the effectiveness of the
algorithm and meet the needs of dispensing. He et al. [72] considered
the two-dimensional histogram to be more complicated, so an improved
median filtering method was used to remove image noise; and the
area-based Otsu [73] method was used to distinguish targets from the
background. Lu et al. [74] improved the anti-noise ability and calcula-
tion speed by changing the coordinate system of the two-dimensional
histogram. The improved two-dimensional Otsu method segmentation
effect is significantly better than the one-dimensional Otsu method.
Chen et al. [75] proposed an improved fast two-dimensional Otsu
threshold segmentation method of gray-gradient two-dimensional his-
togram, which effectively accelerates the segmentation time from 2.5
s to 0.07 s. Zhou et al. [76] found that using the Otsu threshold
segmentation method in the drilling process could not successfully
locate the tool defect area. For tool image segmentation and wear
area edge positioning, they proposed the Otsu segmentation method
based on Laplacian edge information and the Canny operator edge
detection method based on morphology. The new method has a mea-
surement error of 6.04%, which can be effectively and applied to real-
time positioning and monitoring of industrial tool wear. The threshold
8

segmentation method is simple in principle and easy to implement.
However, this method is ineffective when processing workpiece images
that contain noise.

Image segmentation based on edge detection is a process of detect-
ing the existence and position of edges formed by sharp changes in
the color intensity (or brightness) of the images. The essence is to use
a certain algorithm to extract the boundary between the object and
the background in the image [77], and then analyze the characteris-
tics of the target object. The core of edge detection is the choice of
edge operators. The classic edge detection operators include gradient
operators (Sobel, Prewitt, Robert operators, etc.), differential, (Kirsch
operators), Laplacian, and canny operators. The geometric shape of the
operator determines the most sensitive feature direction of the edge.
The edge detection effect of several operators is shown in Fig. 6, which
shows that the Canny operator has a complete and smooth effect. Li
et al. [78] utilized Sobel operator and Hough transform to perform
edge extraction and fitting(line and circle) to realize the positioning
and segmentation of target objects (workpieces with meshed metal
structure). In the process of porcelain polishing, Hosseininia et al. [79]
used Sobel operator combined with morphological functions to improve
edge detection accuracy. The method using the edge detection operator
has a good effect on high-contrast image segmentation and can clearly
segment different regions, but this method cannot obtain a continuous
segmentation structure, and the edge-based segmentation method is
extremely sensitive to noise. In order to improve the continuity problem
of segmented regions, Yong et al. [80] proposed an image segmentation
algorithm that combines regional similarity and edge discontinuity,
and introduced a segmented gradient calculation method in the edge
factor to obtain a more accurate Divide the boundary. The experimental
results showed that the algorithm proposed in this paper can find
the image segmentation boundary more accurately and improve the
segmentation accuracy. The area-based image segmentation method is
to segment the image according to the spatial information of the image,
and classify the pixels based on the similarity characteristics of the
pixels and form the area. Tang et al. [81] proposed an image segmen-
tation method based on region merging. As a single-layer segmentation
algorithm, the method avoids over-segmentation while preserving de-
tails. In summary, traditional image segmentation methods mostly use
the surface information of the image and are suitable for single-shaped
workpieces to be processed, but are not suitable for segmentation tasks
that require a large amount of semantic information, and may not be
able to cope with a large number of actual complex positioning and
processing tasks.

In summary, image segmentation is an important step in image
preprocessing. It is the main procedure to extract the attributes of the
workpiece in the image, which is a prerequisite for the positioning pro-
cessing. The most fundamental and commonly employed segmentation
method is the threshold method, which directly selects an appropriate
threshold for segmentation. The principle of this method is simple and
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Fig. 6. Application effect of edge detection operator in positioning processing [9].
easy to implement. However, this method is not effective in processing
noise-containing workpiece images. For image segmentation methods
based on edge extraction, it is difficult to overcome the influence of
noise by directly using gradient or differential operators. Therefore,
the image must be smoothed and filtered before edge detection, and
the segmentation effect is obviously better enhanced. Traditional image
segmentation technology can yield excellent results using normal work-
piece images (favorable shooting conditions and low noise). However,
these traditional methods do not consider the calculation speed and
segmentation accuracy simultaneously. Hence, a segmentation method
that satisfies the requirements in terms of both positioning accuracy
and operation speed must be developed. The research of image seg-
mentation algorithms is the main hotspot for the image segmentation
module.

3.2.2. Deep learning methods
Several image segmentation methods exist, but all these methods

have a common problem—the tradeoff relationship between segmen-
tation accuracy and anti-noise ability. With the development of deep
learning, several excellent networks for image segmentation have been
introduced. Compared with the traditional image segmentation meth-
ods (threshold-based segmentation, edge-based segmentation, etc.), the
method based on neural networks is faster and more accurate, and is
also applicable to complex-textured images.

Li et al. [82] used ConvNet for feature extraction and workpiece po-
sitioning. Experimental data confirmed that the ConvNet network can
provide accurate positioning coordinates and that the final positioning
accuracy after training can be as high as 97%. Wang et al. [83] applied
convolutional neural networks (CNNs) to the positioning and classi-
fication of mechanical parts, combining multi-scale training, network
pre-training, k-means dimensional clustering, and batch size setting
methods based on CNNs. The experimental results showed that the
method was robust and had an accuracy and positioning speed of
85.8% and 23 frames per second, respectively. In addition, it achieved a
suitable balance between positioning accuracy and speed, and provided
a basis for real-time positioning and processing of parts. Bai et al. [84]
proposed a computer vision positioning algorithm based on a radial
basis function (RBF) neural network combined with an improved Canny
operator. This algorithm can realize sub-pixel positioning to solve
9

the positioning problem of industrial robot on the production line.
Experiments showed that the probability of positioning errors was less
than 6%, and that the calculation time was less than 0.01 s.

Early neural networks were only used to extract image features.
The emergence of fully convolutional networks (FCN) introduced new
solutions to the field of image segmentation (end-to-end training meth-
ods). Ghose et al. [85] described the impact of deep learning on the
field of image segmentation and laid the foundation for its application
in machining positioning. To overcome the shortcomings of current
traditional image segmentation, Li et al. [86] also proposed a laser im-
age segmentation method based on deep learning which used wavelet
transform to extract features of laser images and trained laser image
feature vectors with introduced artificial intelligence learning algo-
rithms, which classified the laser image pixels according to the training
results, so as to realize the laser image segmentation, showing that the
accuracy of this deep learning algorithm for laser image segmentation
with and without noise is 91% and 95%, respectively, with significantly
higher accuracy than that of classic laser image segmentation methods.
Zhang et al. [87] started the study from mainstream image segmen-
tation networks (FCN, SegNet, Generative adversarial network (GAN),
U-Net), and discussed the methods of processing image segmentation,
as well as its development. Wang et al. [88] proposed a new method for
target tracking with FCN, which conducted deeply on off-line features
and image set classification tasks according to massive image data,
suggesting that this method can significantly improve the tracking
accuracy. Aiming at the problems of inaccurate segmentation methods
based on traditional machine learning, loss of edge information and
robustness to be improved, Guo et al. [89] pointed out an image seg-
mentation algorithm based on an improved fully convolutional neural
network, which combines the deep learning model’s better feature
extraction ability and the sensitivity of clustering segmentation to edge
information, and further uses the normalized cuts algorithm to assist
segmentation, with the experimental results showing that the algorithm
finally achieves a higher segmentation accuracy than the traditional
convolutional neural network image segmentation algorithm. Taylor
et al. [90] discussed the common deep network architectures (AlexNet,
Visual Geometry Group (VGG), Google inception Net (GoogleNet), Res-
idential Networking (ResNet), Recurrent neural Network (ReNet)) in
image segmentation, and pointed out the development trend of image
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segmentation technology in the future. A comprehensive performance
comparison of key image segmentation methods (traditional and deep
learning segmentation methods) in terms of positioning processing is
presented in Table 5.

3.3. Summary

Under the influence of machining environment and shooting equip-
ment, image enhancement can be divided into three types of enhance-
ment: weak light, normal light, and strong light. There is a relatively
complete set of processing modes for the research of image enhance-
ment under normal illumination. In recent years, researchers have
made more in-depth research on low-illuminance image enhancement
techniques, but existing enhancement methods (dehazing models and
Retinex’s theory) ignore the influence of noise on image quality during
image processing. Enhancement in low illumination conditions requires
consideration not only of brightness and contrast, but also of noise and
equalization. Therefore, developing a mature and practical low illu-
mination enhancement system remains a major challenge. It is worth
mentioning that the convolutional neural network has relatively large
anti-interference ability, so combining convolutional neural network
with existing models and theories to overcome the noise problem is
a direction worthy of further research. In addition, there are currently
few image enhancement methods under strong light conditions, which
is another major task in the future.

Image segmentation is one of the important steps of image pre-
processing. Extracting the properties of the workpiece in the image is
the main step and the premise of the positioning process. At present,
the research on image segmentation can be roughly divided into two
categories: one is the traditional segmentation and the other is the
deep learning segmentation. The traditional segmentation mainly in-
clude: threshold-based image segmentation methods, edge-based image
segmentation methods, and region-based image segmentation methods,
with simple and easy operated principles, which are sensitive to noise.
When the image contains noise, the segmentation effect is poor. The
deep learning segmentation mainly includes cluster analysis image
segmentation and neural network-based image segmentation methods,
which can solve the problem of noise sensitivity in the traditional meth-
ods and greatly improve the segmentation accuracy. With the rapid
development of artificial intelligence technology, training data tends to
be quantified. Traditional image segmentation methods will gradually
be replaced by segmentation methods based on deep learning. The
existing segmentation algorithm technology based on deep learning
is relatively mature, but there are problems such as large amount
of calculation and long time-consuming. On the other hand, image
segmentation technology is often oriented to a specific application
field, and better results can be obtained by combining with related
field knowledge. The application of image segmentation technology
based on deep learning in industrial positioning processing will become
more and more common in the future. In addition, a set of image
segmentation methods with universal applicability is the direction of
future research efforts.

4. Feature extraction for processing positioning

4.1. Traditional methods

Feature extraction is the basic premise for locating processing ob-
jects. Feature extraction is a process of dimension reduction and is a
basic computational task in machine vision [98]. Traditional feature
extraction technology generally extracts the edges, points, textures, etc.
of the object to be processed in processing positioning. Representative
feature extraction algorithms include SIFT, SURF, and so on.

For improving the cutting accuracy of the automatic cutting ma-
chine, Li et al. [99] proposed a method with machine vision, which
used an improved morphological gradient filter operator to find the
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rough edge of the sheet, and the least square method to fit the sub-pixel
edge points that met the requirements into a straight line, and finally
the sheet offset was calculated according to the geometric relationship
to correct the deviation, performing the position by extracting feature
points, with the positioning accuracy theoretically reaching 0.03 mm.
However, the visual positioning method is not stable in actual working
conditions due to its influence on the working environment. Yang
et al. [100] proposed speeded up robust features (SURF), an image
feature detection method based on the Gaussian pyramid model; SURF
replaces the Gaussian filter in scale-invariant feature transform (SIFT)
with a square filter and analyzes the image at different resolutions
to obtain differential images in different scale spaces. The authors
found that the speed of feature extraction increased by 75% when
using SURF. The SURF [101] algorithm – an accelerated version of the
SIFT – uses integral images and box filters to reduce computational
complexity while maintaining an accuracy similar accuracy to that
of SIFT. Chen et al. [102] proposed an improved template matching
method that uses the pyramid hierarchical search strategy to improve
the speed of feature search and extraction for positioning and dic-
ing of semiconductor chips in an automatic dicing saw. Rajaraman
et al. [103] combined computer vision positioning technology with
robotic welding, extracted features from the CAD model, and matched
and positioned extracted features. After comparison and verification, it
was found that the visual positioning welding system was 85% faster.
Wei et al. [104] proposed a new method that selects the shape features
of the workpieces through attribute reduction and generates rules
based on the recognition knowledge to classify workpieces instantly
and accurately. Experimental results showed that the recognition rate
of the sample could reach 100%. However, this method requires a
large amount of feature data. The limited number of samples taken
by the camera could not meet the needs of this method. Traditional
feature extraction algorithms have poor performance, and when using
traditional methods to locate relatively smooth artifacts (such as arcs,
circles, etc.), unable to extract too many feature points may directly
cause inaccurate positioning.

4.2. Template matching algorithms

Template matching is one of the most commonly used methods to
locate a target location, which can traverse the image through a sliding
window and calculate the similar value between the sliding window
and the image template to determine the location of the matching
template. In the visual positioning system, it is one of the commonly
used methods to locate the target position by detecting the edge contour
and using template matching. Fast and accurate matching method is
the key to high-precision positioning. In order to shorten the matching
time, Tian et al. [105] improved the traditional method by reducing
the matching points, and proposed a fast template matching method
based on image edges. This method finds out the representative edge
information by binarizing the template graph, and then matches the
points corresponding to the features. When the absolute difference
of the feature points exceeds a certain threshold, the calculation is
skipped and the next detection is performed. Experiments show that
the matching time of the template size of 224 × 224 was 0.4 s faster
than the matching time of the 11 × 11 template. Obviously, this method
was better for matching large templates. Aiming at the problems of long
calculation time of existing target matching algorithms and inaccurate
positioning of rotating and zooming targets, Yu et al. [106] proposed
a spiral target matching algorithm based on pyramid image structure
and Hu moments. Experiments showed that the matching method pro-
posed had higher positioning accuracy and anti-jamming characteristics
for spiral targets with variable rotation and position. However, the
algorithm is only applicable to workpieces with complete contours,
and cannot be applied to objects with incomplete and discontinuous
contours. For large-size workpieces whose size exceeds the FOV of the
camera, image stitching must be performed to achieve detection and
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Table 5
Classification of image segmentation algorithms for visional positioning.

Classification Method Object Performances Remarks

Otsu [71] Semiconductor
encapsulation

Otsu combined with particle swarm
algorithm optimized the
segmentation speed and accuracy of
grayscale images, and met real-time
requirements.

Although the optimal threshold can
be obtained, it is sensitive to noise
and can only be segmented for a
single target.

Two-dimension
Otsu [70]

The tubular
Workpieces

Change the coordinate system of the
two-dimensional histogram to
enhance the noise resistance and
increase the calculation speed.

The anti-noise ability of the Otsu
algorithm is enhanced, but it takes
up a lot of storage space during
calculations, and the results are not
accurate enough.

Three-
dimension Otsu
[91]

The color
workpieces

Better preserve tiny details and
boundaries, and reduce execution
time.

Solved the technical shortcomings of
one-dimensional and two-dimensional
Otsu and provided the best threshold
for multi-level threshold processing,
but the method has not been further
verified.

Traditional
segmentation
methods

The iterative
method [69]

The color
workpieces

Better preserve tiny details and
boundaries, and reduce execution
time.

Solved the technical shortcomings of
one-dimensional and two-dimensional
Otsu and provided the best threshold
for multi-level threshold processing,
but the method has not been further
verified.

Canny operator
[9]

The fillet
workpieces

Obtain images with clear edges and
can effectively suppress noise.

The theory of Canny operator edge
detection is relatively complete, but
the shape of the detection workpiece
is limited.

LOG [92] Glass shards Less calculation, high efficiency of
edge detection.

The combination of LOG operator
and mathematical morphology
improves the anti-noise ability, but
the algorithm is not universal.

CNNs [86] Laser
processing

For noisy and no-noise laser images,
the segmentation accuracy reached
91% and 95%.

Methods based on deep learning
should be verified in various fields.

Fast R-CNN
[93]

Laser welding Effectively separate the detection
target from the background and
eliminate noise interference. The
maximum error is 0.47 mm, and the
average error is 0.29 mm.

Suitable for welding robots and can
work in complex environments, but
it is unknown whether the welding
accuracy can be achieved in
precision machining.

Deep learning
methods

Mask R-CNN
[94]

Specific data
set (BIWI)

Tested on the BIWI data set and
self-generated data set, the accuracy
rate reached 83%.

Good positioning results for groups
and individuals, and may be applied
to mechanical positioning processing
in the future.

ConvNet [82] Automatic
positioning and
placement of
workpieces

The system achieved a 100% success
rate in 200 workpiece placement
tasks and be completed within 60 s;
the average time for precise
positioning and placement is less
than 20 s.

Good performance in accuracy and
speed, but the model performs poorly
under weak light conditions.

FCN [89] Specific data
set (VOC2011)

Accuracy up to 94%,and precision up
to 95%.

Process workpiece images of any size,
with better segmentation results.It
can be applied in the field of
machining positioning in the future.

K-means [95] Car tires 100 samples were tested, the scoring
accuracy rate was 95%, and the
conformity assessment accuracy rate
was 99%. And the average integrity
calculation time is 9.27 ms.

It is of guiding significance to the
automotive industry and should be
verified in practical applications
later.

Others Spatial
clustering [96]

Workpieces
with
discontinuous
edges

Good continuity, connectivity
between the areas, and the boundary
description is relatively accurate.

Solved the problem of regional
similarity and edge discontinuity, but
the calculation time increases
accordingly.

GA [97] Theoretical
research

Reduce the complexity of the
problem and obtain a faster
convergence speed.

A segmentation method combining
GA algorithm and ANNs was
proposed, but no specific verification
test was carried out.
positioning [107], the principle is shown in Fig. 7. Chen et al. [108]
proposed an improved template matching method based on the initial
angle, which can establish an image pyramid structure with a pyramid
hierarchical search strategy, improving the search speed of feature
images. The experimental results show that the improved algorithm
can match almost all targets to achieve precise positioning and real-
time cutting with a 99.25% success rate, even in the conditions of
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low light, strong light, uneven illumination and angle rotation. The
above feature-based algorithms can match targets by searching for line,
corner and contour features, which are adaptable and robust. Although
the combination of template matching and some improved algorithms
can improve the matching accuracy, the complex and time-consuming
problem of extracting and analyzing geometric features still cannot be
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solved. Therefore, it is one of the future tasks to explore the template
matching algorithm with low-time consuming and high precision.

4.3. Deep learning methods

In recent years, computer vision methods based on deep learning
have developed rapidly. Feature extraction has been widely used in
many fields. It is used to find all the objects of interest in the image
and determine their positions and sizes [101]. Compared with tradi-
tional local feature description methods, deep learning is a self-learning
feature extraction method, and the obtained features can describe the
rich information of an image more clearly [109]. Therefore, the appli-
cation of deep learning to extract representative features has received
extensive attention.

Deep learning methods based on CNNs have received widespread
attention in the context of target detection and processing positioning.
The depth feature extraction model is depicted in Fig. 8. Fast R-
CNN, Radial basis function(RBF), Single shot multibox detector(SSD),
and other algorithms have been introduced, and they constitute the
basic framework of target detection. Deep learning requires a large
number of data sets, which are used in image target detection and
feature extraction after training. In target detection, traditional detec-
tion methods are considerably affected by noise and cannot detect true
and complete contour edges. Methods based on deep learning can be
directly applied to noisy images. The advantage of these methods is
that they require neither retraining nor re-adjustment of the threshold
parameters. Therefore, these detection method have been extensively.
Zhang et al. [110] proposed a part recognition method based on
deep learning, using 300 training samples and training the recognition
model over 1000 iterations. Experiments showed that the model could
extract the shallow and complex features of parts automatically and
that the recognition accuracy was as high as 98%. However, due to
the small number of parts and samples, the generalization ability of
the model was weak. Zhang et al. [111] proposed the application of
deep learning in monitoring laser processing, using two typical CNN
models (AlexNet and ResNet). The results showed that the multi-task
learning performance of AlexNet is significantly better than that of
ResNet. In summary, feature extraction methods based on deep learning
are self-adaptable, self-learning, fast and highly accurate. Their main
advantages are strong execution, high accuracy, strong robustness, and
insusceptibility to influences. Tian et al. [112] proposed a new con-
volutional neural network algorithm, which introduces the recurrent
neural network into the convolutional neural network, and uses the two
types of networks to learn image features in parallel, which improves
the accuracy of feature extraction and image recognition capabilities.
This method can be used for feature extraction of complex images and
backgrounds.

In recent years, feature descriptor methods based on deep learning
(HardNet, HyNet, Smart ocean under water sensor network (SOSNet),
etc.) have been proposed one after another. Huo et al. [113] pro-
posed a straight line feature description method based on convolutional
neural network learning, which used about 208,000 matching straight
line pairs for training, and performed feature extraction through the
HardNet network structure and triple loss function, showing that this
method has good distinguish ability under the conditions of viewing
angle, blur, scale and rotation. However, the proposed method is more
friendly to objects with more linear features, so whether it can be
applied to machining positioning requires further verification. In terms
of target detection in hyper scale space, Zheng et al. [114] proposed a
HyNet detection framework, which provided a new perspective for the
representation of scale-invariant features, but it will bring additional
computational burden to HyNet for very large-scale feature learning.
In future, a more efficient super-scale feature learning algorithm should
be developed. Durrani et al. [115] proposed to apply SOSNet to under-
water sensor detection with the experiments which has proved that the
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performance of this method is better than particle swarm optimization,
ant colony algorithm and gray wolf optimization algorithm. However,
whether the algorithm can be used in machining location has not been
verified. Wen et al. [116] proposed a convolutional neural network
model based on dual convolutional channels, which was compared with
the current mainstream positioning algorithms, with the results show-
ing that the algorithm has higher positioning accuracy and success rate,
but has not been verified in positioning processing applications. Table 6
summarizes some of the feature extraction algorithms (traditional and
deep learning algorithms) used in visual positioning in processing.

4.4. Summary

The application of feature extraction algorithms in machining posi-
tioning can be roughly divided into four categories: traditional feature
extraction algorithms, template matching algorithms, deep learning
algorithms, and other algorithms. In this study, the most commonly
used traditional feature extraction algorithms, template matching al-
gorithms, and deep learning-based algorithms are described in detail.
Feature extraction algorithms for visual positioning in machining are
shown in Table 6.

Traditional image feature extraction methods include SIFT, SURF
and so on, which have satisfactory invariance in rotation, affine trans-
formation and illumination changes. These methods are usually used
for object recognition and image matching, mainly relying on spatial
information (shape features, edge features, corner features, etc.). If the
image is blurry and the features of the workpiece are not obvious,
a good positioning effect cannot be achieved. The core of template
matching algorithm, simple and easy to use, is mathematical algo-
rithm. All these methods mentioned above are very mature in theory,
adaptable, robust, easy to implement and fast, but take a long time
to extract and analyze image features with complex geometric shapes
and backgrounds. In addition, the template matching method requires
a high degree of consistency in size and angle between template and
target image, with weak anti-interference ability. The feature extraction
method based on deep learning can effectively avoid the shortcomings
of traditional algorithms, reduce the impact of noise and environmental
variables, with a wide range of applications and strong stability, which
can effectively improve the accuracy and quality of feature extraction.

The latest descriptor methods, such as HyNet, SOSNet, HardNet,
etc., appeared in recent years have been proved to have good per-
formance, but there are few literatures mentioning its application
in machining positioning due to the novelty of this method, with
the phenomena of illumination changes, deformation, disappearance,
background confusion, and scale changes in actual images. Therefore,
researchers should consider comprehensively improving the diversity
of training models based on deep learning.

5. Case studies

5.1. Application in traditional machining

In machining, exact positioning and processing of workpieces are
important to ensure product quality. In terms of non-contact position-
ing, machine vision has several advantages compared with traditional
manual positioning; these include high precision and satisfactory real-
time performance. The traditional positioning method, which involves
the use of a contact measuring instrument and measuring head [127],
is used for manual workpiece positioning, and the qualified rate is
ensured through general examination and sampling inspection by hu-
mans. This often leads to low production efficiency because of envi-
ronmental and human-related factors. Visual positioning methods can
locate critically as well as measure and evaluate the surface quality
of workpieces in real time, and can improve the product qualification
rate. Thus, they can address the shortcomings of traditional positioning

methods.
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Fig. 7. Positioning of large size workpieces [107].

Fig. 8. A typical deep feature extraction model in machining for positioning.

Fig. 9. Typical application of positioning system (a) grinding [124]; (b) casting [125]; (c) turning [126]; (d) drilling [24].



Measurement 184 (2021) 109973W. He et al.

m
t
i
r
m
w
t
a
p
t
e
i
a
m

Table 6
Feature extraction algorithms for visual positioning in machining.

Classification Methods Object Characteristic Remarks

SIFT [117] Workpieces with
clear contours
and many
feature points

Maintain good invariance to image
geometry and optical deformation

Large amount of
calculation,inaccurate positioning of
workpieces with few fuzzy edge
feature points.

SURT [118] Regularly shaped
workpieces (such
as square and
round
workpieces)

Stable matching effect and high
matching accuracy

Improved the situation of false
matches, but the algorithm takes a
long time.

Traditional
methods

HOG [119] Workpieces with
simple shapes
(shaft
workpieces,
plates,
workpieces with
holes, etc.)

Effectively preserve the edge details
of the image.

Large amount of calculation, unable
to process occluded workpiece
images.

ANNs [120] Rolling element
bearings

The accuracy of the trained neural
network model in the training data
can reach 90.2%.

High accuracy cannot be obtained
when the background feature is
similar to the target feature

Improved
template
matching
method [105]

Workpieces with
continuous edges

The matching time of the 224 × 224
template size is 0.4 s faster than the
matching time of the 11 × 11
template.

Use large size templates, which may
not be suitable for small workpieces.

Template
matching
methods

Shape matching
[14]

Casting
workpieces

System repeatability is within 2 mm. Provided a way for the positioning
and grasping of rough-machined
castings, but its accuracy needs to be
improved.

Template
splicing [17]

The large size
workpieces

Solve the positioning problem of
large-size workpieces; faster than
traditional template matching.

The Images can be stitched if they
have at least 30% overlap, and the
positioning accuracy needs to be
improved.

Improved CNNs
[64]

Unfeatured Weld
Positioning

Provided a solution for feature
extraction of featureless images.

The algorithm has certain feasibility,
but its performance needs further
research.

R-CNN [121] Positioning of
industrial robots
(bottles)

Locate and recognize targets with a
recognition accuracy of 82.34% in a
complex environment.

Provide an experimental reference
for the application and development
of industrial robots, but the
positioning accuracy and precision
need to be further improved.

Deep learning
methods

Improved SSD
[73]

Unmanned
driving field

Taking into account the problem of
multi-scale fusion, the feature map
has richer semantics, and the
detection accuracy is improved than
that of a single SSD.

Validate the algorithm in a specific
data set and not apply it in actual
positioning.

RBF [122] Car body
positioning on
the production
line

The translation error of positioning is
less than 0.052 pixels, and the
proportion error is less than 0.06.

Achieve sub-pixel positioning and
can be developed in the automotive
industry.

SOSNet [115] Location
detection in
water

Better superiority than GWO, PSO
and ACO algorithm.

Has excellent detection and
positioning capabilities, which can be
verified in other positioning fields.

Others Ant colony
optimization
[123]

Wheel alignment Combine the advantages of gradient
strength and phase consistency.

Parameters need to be set and the
convergence speed is slow and
time-consuming. The method needs
improvement.
At present, the application of computer vision in machining is
ainly focused on the positioning measurement, surface quality de-

ection, and positioning processing. Before the start of the machin-
ng process, the original parts need to be initially positioned, which
equires a long time. Mendikute et al. [125] proposed a new auto-
atic alignment scheme based on three-dimensional vision technology,
hich utilizes automatic geometric coding and alignment algorithms

o achieve automatic measurement calculation and virtual alignment
nd positioning of target on the representative point (surface to be
rocessed). Experimental results showed that the overall precision of
he scheme was 3 to 5 mm for parts with a length of 5 m. Abdul-Ameer
t al. [126] developed a vision-based sensing system that provides
nformation about the quality of the workpiece during processing and
djusts the processing parameters to process the visual feedback infor-
ation. In addition, a computer program was developed for adaptive
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control of workpiece processing in real time. Visual positioning can
also be used to improve machining accuracy during grinding, turning,
and milling [128]. CNN systems with the vision positioning function
have become valuable for machine tool intelligence because vision
positioning represents a fast-growing intelligent feature for machines.
Xu et al. [124] developed a novel vision-oriented open CNC (profile
grinding machines) system (Fig. 9) for the precise machining of parts
with contour surfaces (complex molds and cutting tools). The machin-
ing results indicated that the system can effectively combine image
processing with motion control and improved machining precision in
profile grinding. The specific processing flow and effect are shown in
Fig. 10. Butt et al. [129] suggested a new automation scheme in the
sand casting process; it involves the use of mold positioning technology
based on computer vision algorithms to find the coordinates of the
center of the inverted cup and then place the mold in the best posi-
tion for precise pouring of the molten metal. The automation system
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(Fig. 9(b)), once started, does not require any intervention or manual
adjustment, which substantially improves production efficiency and
accuracy. Post-manufacturing quality inspection is also an important
process. Ou et al. [130] developed a machine vision recognition and po-
sitioning technique that can help robots to automatically recognize and
accurately position smart meters in complex industrial environments.
The method involves determining the center position of four screws,
through image preprocessing and calculated of the contour of the meter
based on the geometric position; then, the position of the meter is accu-
rately determined using a positioning algorithm. Experiments revealed
that the algorithm had practical value. Shahab [131] et al. developed
a vision system (Fig. 9(c)) to locate machined parts. The machining
accuracy was 10% higher than that of traditional turning machining. In
addition, experiments showed that manufacturing of workpieces using
computer vision is also suitable for grinding, milling, and other types
of processing. Wang et al. [24] designed a rim valve hole positioning
processing system (Fig. 9(d)) according to the characteristics of valve
holes and the structure of the rim for measuring and positioning of the
edge valve hole on the coating line. The system calculates the position
of the rim hole and performs feature recognition and measurement
through image processing to control the servo motor to locate the
position of the wheel hole. The accuracy and reliability of the method
were verified through experiments.

5.2. Application in non-traditional processing

With increasingly stricter requirements for machining accuracy and
surface quality, traditional machining methods are no longer suitable
for the difficult-to-machine materials and precision parts, such as stain-
less steel, heat-resistant steel, and titanium alloys. Non-traditional ma-
chining methods, such as electric discharge machining (EDM), laser ma-
chining, ultrasonic machining, and water jet machining have emerged.
However, the machining accuracy of these methods is limited by sev-
eral factors, such as suitable positioning of the workpiece during ma-
chining process to avoid damage. The combination of machine vision
technology and special processing technology is expect to represent
another breakthrough in the manufacturing industry.

An important precondition for an effective machining process is to
ensure that the machining position is correct. In EDM, wire bending is
one of the main factors that affect the machining accuracy. Dauw [133]
proposed the use of an optical detector to detect and compensate
for wire deflection in real time, for positioning and control during
high-precision EDM cutting online. The processing efficiency was sig-
nificantly improved in comparison with that of the traditional cutting
machine. Huang et al. [132] proposed a novel method (a detection
line algorithm) and established an EDM positioning and detection
platform (Fig. 11(a)) that can detect the depth of drilling holes while
effectively positioning the machining system. This system can provide
a meaningful reference for EDM industry. In laser processing, accurate
beam positioning is particularly important because of the small laser
spot. Dorsch [134] developed a sensor system that can determined
the correction values between the set and actual positions from mea-
surements, this ensure that the laser welder can subsequently perform
the welding in the correct position. To improve the productivity, Ho
et al. [135] proposed a new method to orient the center position of
the hole and monitor the laser drilling process using a computer vision
system that can estimate the depth of the hole online. The use of high-
power laser beams to ablate holes through workpieces is an important
development in machining. Therefore, this method has the potential
to reduce manufacturing costs. Defective workpieces can be produced
in laser processing because of incorrect positioning or improper prepa-
ration of the geometric shape of component edges. Luo et al. [136]
developed a seam-tracking system based on visual positioning that can
locate the initial welding point and calibrate it automatically. For lap
welding of titanium alloy (V-groove, fillet), the accuracy achieved was
15

within 0.4 mm. Jia et al. [3] used positioning and navigation systems
based on machine vision in laser micro hole machining. These systems
mainly captured images of the micro hole using a CCD camera and
navigated to the top of the micro hole, processed the collected image,
and located the micro hole with a diameter of less than 0.3 mm. The
system, shown in Fig. 11(b), can position circular holes accurately but
is not as effective for the positioning of inclined, square, and other
irregularly shaped holes. Computer vision technology can contribute
to electrochemical machining and water jet machining as well [137].

In summary, using computer vision technology is widely used for
positioning and detection in traditional processing but not as much in
special processing. However, based on the foregoing discussion, visual
positioning and visual inspection are expected to replace traditional
methods in special processing.

5.3. Application in PCB machining

PCB is the foundation of the information industry, with PCBs ex-
isting in almost all products related to electronic information. With the
rapid development of the electronic processing industry, PCB gradually
tends to be miniaturized. The precise positioning of PCBs is a very
important task for automatic assembly and inspection in the manu-
facturing process, which ensures the successful insertion of electronic
components and the correct installation of integrated circuit chips on
the board, to maintain the quality of electronic products. In addition,
the automatic positioning of PCB can solve various subjective problems
when manual positioning, which can quickly provide accurate size and
position information.

In the past, PCB required complicated clamping adjustments to en-
sure the position consistency of the machine tool coordinate system and
the file coordinate system during processing, with complicated steps,
long operation time and low efficiency. As the development of visual
positioning technology, many scholars have explored PCB positioning
methods. Malge et al. [138] used visual positioning technology to
locate and classify the defects on the PCB, and achieved good classi-
fication results. However, they did not consider the impact of noise
on positioning. Kuo et al. [139] proposed an automatic marking point
positioning method for PCBs based on template matching technology,
which used artificial neural networks and combined moments of Hu
and Zernike for training to extract feature vectors that are robust to
rotation changes and scale changes, indicating that the positioning
time of the proposed method is only 0.55 s, which is better than the
3.97 s of traditional global template matching. However, this automatic
positioning method requires a series of complex pre-image processing
operations and a lot of preparation work. The above methods are
suitable for PCB positioning and defect detection, and the position-
ing objects have certain limitations. Wang et al. [140] proposed a
positioning method to locate a chip; this method uses a deformable
template to detect the deflection angle and offset in the process of
surface mounting. It combines the gradient, gray, and geometric fea-
tures of the image and identifies the best matching position between
the deformation template and the target image through genetic algo-
rithm optimization. Experimental results showed that the method is
accurate and stability and has a high calculation speed. Moreover, its
detection and rotation errors are less than 0.25 pixels and 1 degree,
respectively, which fully satisfy the positioning accuracy requirements
of the placement computer vision systems. Tsai et al. [141] proposed
a fast image alignment method based on expectation maximization
technology. Experiments demonstrated that the method can achieve
PCB positioning with a translation error of less than 1 pixel and a
rotation error of less than 1 degree. The above methods are suitable for
PCB positioning and defect detection, and the positioning objects have
certain limitations. Chou et al. [142] explored the application of deep
learning technology in PCB positioning, and evaluated and compared
four deep neural network models in PCB positioning performance. The
data obtained in the experiments showed that the model combining

CNN and support vector regression had the best estimation accuracy,
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Fig. 10. The workpieces positioning of the grinding processing system [128].
Fig. 11. Typical application of positioning system in special processing (a) EDM vision system [132]; (b) laser drilling vision system [3].
with a maximum error of less than 1 pixel. Although the neural network
model combined with the support vector regression machine can obtain
good positioning results, this type of model is easily affected by changes
in illumination. If the illumination cannot be controlled, the model
will not show good results. Therefore, a fixed lighting device with
the intensity of good light and stable light is the direction that PCB
positioning system needs to focus on.

5.4. Summary

In summary, machine vision positioning technology has shown great
potential in traditional machining (turning, milling, planing, grinding,
drilling, etc.), non-traditional machining and PCB fields. Before the
development of visual positioning technology, technicians often used
manual or mechanical positioning to locate the workpieces to be ma-
chined, which is affected by subjective factors. The positioning effect
is poor; and the accuracy is low. What is more, long-term operation
can also cause damage to the operator. Compared with the traditional
method (processing after manual positioning), determining the position
16
of the workpiece using visual positioning technology and then per-
forming accurate processing is significantly advantageous in terms of
accuracy and efficiency, its effect can be shown in Table 7.

With the development of positioning algorithms and artificial in-
telligence, computer vision is widely applicable in machining. The
initial positioning and machine alignment of the original parts before
processing effectively reduces the preparation time before processing.
In processing, the visual system is used for information feedback to
determine the position of the workpieces and perform high-precision
operations, such as cutting, welding, and drilling. For finished products,
computer vision can be used to perform quality inspection to improve
the efficiency of the entire processing system. In summary, incorporat-
ing computer vision components into CNC equipment can improve the
automation and intelligence of the system. However, the visual system
also has certain limitations. For example, an optimal lighting scheme
is yet to be developed, and a method to further optimize the image
processing algorithm is necessary. These problems must be solved
through future research. In addition, visual positioning technology is
also widely used in PCB processing (cutting, drilling, welding, etc.). A
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Table 7
Summarization before and after using the visual positioning system.

Application
scenario

Objects Before using machine vision After using machine vision Effect

Positioning (rim
valve hole) [24]

Use visual observation to observe
the position of the valve hole,
which is labor intensive and low
in production efficiency.

Automatically identify and locate
valve hole.

The absolute error of the valve
hole center location can be
guaranteed within the error range
of 3 mm.

Traditional
machining

Grinding (parts
with contour
surfaces) [127]

Unable to intuitively detect and
compensate contour errors during
the machining process.

Meet efficiency requirements and
improve the machining accuracy
of contour grinding through
combining image processing and
motion control .

The average relative contour error
was less than 3 μm compared
with the in situ measurement.

Milling (raw
part) [128]

The massive consumption of labor
and machine time; alignment
accuracy exceeds acceptable
range of 3–5 mm.

Lower human labor
required;automatic
photogrammetric calculations and
virtual alignment.

Reduce time consumption and
improve accuracy; the
measurement error is below
0.1 mm.

laser-
electrochemical
micro-hole [3]

Artificial observation has a
low-accuracy positioning and a
large amount of asymmetric
micro-holes are produced.

Solve the positioning problem of
the electrode wire and the
micro-hole and improve the
processing accuracy and
efficiency.

The average distance error of
measured and standard values in
image coordinate system was 2.1
pixels, and the error was less
than 0.012 mm.

Laser-drilling
process [135]

Unable to locate and monitor the
laser drilling process online.

On-line image acquisition and
analysis. Locate the position of
the laser hole in real time and
monitor the depth of the hole.

Verify the feasibility of
monitoring the focus position and
taper of the hole during laser
processing.

Special
processing

Laser welding
[136]

The high reflectivity of the laser
seriously affects the accuracy of
positioning.

Accurately track the position of
the weld through vision system,
and improve the welding
efficiency.

Tracking V-groove, fillet, lap and
butt joints of titanium alloys with
high accuracy of less than
0.4 mm.

Template
matching
positioning
[139]

Time-consuming, low-precision,
and cannot adapt to rotation and
scale changes.

Sub-pixel level high accuracy and
short computing time.

The average positioning time
increased from 3.98 s to 0.55 s.
The overall average error value is
less than 7 μm, and error
standard deviation is 1 − 3 μm.

PCB machining Deep learning
[142]

Time consuming and need
complicated fitting algorithms to
improve the estimation accuracy.

Realize real-time high-precision
positioning and have better
robustness.

Achieve a sub-pixel accuracy and
yield a rotation error less than 1
degree with 1-millisecond
evaluation time.
positioning processing system suitable for various fields and industries
will become the unremitting pursuit of researchers.

6. Outlook

In recent years, with the rapid development of image processing
algorithms and the widespread adoption of automation in produc-
tion, computer vision technology has received increasing attention.
Visual positioning technology has also been widely used in mechanical
processing. However, due to the diversity of workpiece shapes, the
complexity of machining environments, and the difference between
theoretical and practical situations, visual positioning technology needs
to be further improved. In this regard, future research should focus on
the following aspects.

(1) For image acquisition, monocular cameras have an irreconcil-
able contradiction in terms of the angle of view and distance, that is, the
wider the angle of view, the shorter the distance that can be precisely
detected and the less the information that can be obtained. Moreover,
monocular vision cannot yield the depth information of the workpiece.
However, the application of binocular vision and even multi-eye vision
can compensate for this shortcoming. The combination of computer
vision positioning technology and multi-sensor technology can provide
multi-directional and in-depth information of workpieces and can lo-
cate workpieces accurately. This represents one of the development
directions for computer vision positioning.

(2) Regarding the lighting scheme, the success of a computer vision
positioning system depends primarily on the quality of the lighting
device. A suitable lighting scheme will improve the efficiency and accu-
racy of the vision system. Nonetheless, according to our research, there
is no literature regarding specific layouts of the lighting system, and
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most systems use LED lights (bar, ring, point light source), which offer
satisfactory color rendering and longevity but have an unchangeable
brightness and intensity. Therefore, a compound light with adjustable
intensity and brightness or a combined light (combination of multiple
light sources) should be developed. The future vision positioning sys-
tem should have a stable, and detachable light source device which
should have universal applicability and be applicable to multiple fields
and multiple scenarios.

(3) For image preprocessing (image enhancement, image segmen-
tation, etc.), The results of image preprocessing directly affect the
accuracy of subsequent processing and positioning. In terms of image
enhancement, researchers have already developed a relatively com-
plete enhancement scheme for images under normal light and a lot of
research on image enhancement under low light, but a relatively com-
plete theory has not been formed. Existing image processing methods
ignore the influence of noise on image quality. Recently, researchers
have combined convolutional neural networks with existing theories
(dehazing models and Retinex theory) with good results. Therefore,
the implementation and application of convolutional neural networks
(CNN, Deep CNN, GAN, etc.) in weak light enhancement is the future
development trend. Additionally, the methods of strong light enhance-
ment are relatively few, and the future research will be an important
topic. In terms of image segmentation, traditional segmentation meth-
ods are mainly based on the low-level features of the image. Although
a rough result can be obtained, the accuracy and speed are not satisfac-
tory. With the development of artificial intelligence and deep learning,
the combination of deep neural networks (FCN, SegNet, GAN, U-Net,
etc.) and image segmentation will become an inevitable trend. An
image segmentation method that could be universally adaptable and
be used across domains will be the focus of research.

(4) Positioning algorithm is the core of positioning processing in

machining, with the main content of feature extraction and template
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matching. Incorporating deep learning on the basis of existing posi-
tioning algorithms will result in better positioning results. However,
which one can get better results, a separate deep learning algorithm
or a combination of it with traditional algorithms? Therefore, deep
learning positioning should be further explored. Feature descriptors
(HyNet, SOSNet, HardNet, etc.) methods appeared in recent years have
been proved to have good feature description capabilities, but these
methods are rarely applied to processing and positioning. Whether the
methods can be applied to machining still needs researchers to practice
and verify.

(5) In terms of machining systems based on visual positioning, auto-
matic positioning systems provide more accurate position information
for machining than traditional systems do. This enables high-precision
operations (cutting, welding, laser processing, water jet cutting, etc.).
However, the shape and position of the workpiece have a great in-
fluence on machine vision positioning, so it is possible to establish
a large database containing various shapes of the workpiece for the
subsequent extraction or matching of features for accurate positioning.
Moreover, for the positioning of the workpiece on the assembly line,
real-time and online positioning and processing can be realized through
the combination of deep learning and visual positioning. The processing
of fixed workpieces, on the other hand, can be matched and posi-
tioned by comparing with the template of the database. Furthermore,
multi-information fusion technology is expected to emerge with the
development of visual technology and deep learning. In the future,
a cross-domain visual positioning system suitable for most processing
objects will become possible.
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